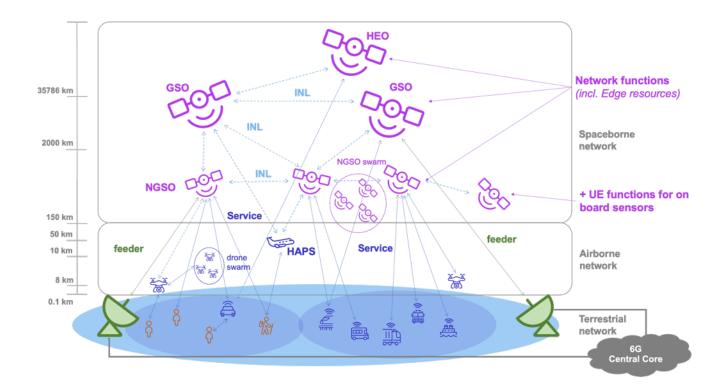

Enabling technologies for 6G-NTN

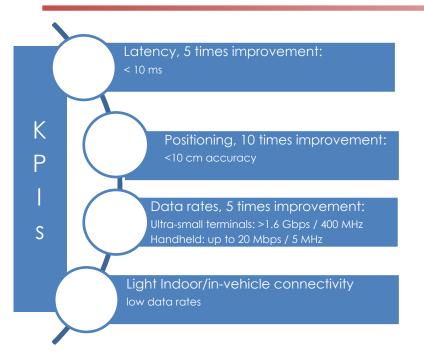
Alessandro Vanelli-Coralli, Alessandro Guidotti

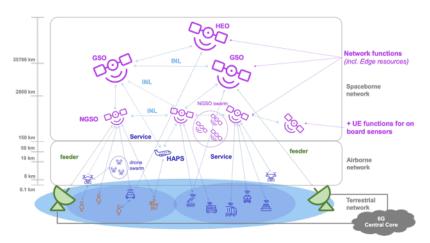
Department of Electrical, Electronic, and Information Engineering «Guglielmo Marconi»

The role of Non-Terrestrial Networks in 6G


- 6G systems are expected to achieve more than "just" extremely fast connectivity
 - digital twinning between domains: convergence of the physical, human, and digital worlds
 - connected intelligence
 - immersive communications: high-resolution visual/spatial, tactile/haptic, and other sensory data

- Non-Terrestrial Networks will be pivotal to provide a ubiquitous, continuous, flexible, and resilient infrastructure for
 - Direct connectivity to smart phones outdoor and in light indoor/in-vehicle (emergency communications)
 - Connectivity mobile platforms (trains/planes/ships/drones/HAPs)
 - Broadcast/multicast
 - Low latency communications to support vertical markets (railway, automotive, aeronautical, etc)
 - Network based positioning
 - loT applications (global NB-loT/mMTC coverage, remote/control monitoring of critical infrastructures, smart good tracking)


The NTN path from 5G to 6G


- The current NTN standardization framework provides a solid ground for NTN integration into 5G
- 5G advanced will introduce enhancements with additional capabilities and increased performances
- 6G will target a fully unified T-NT infrastructure based on multi-dimensional multilayer architecture

6G NTN: KPIs and Innovations

Architecture and system design

Multilayered constellation from GEO to drones, Innovative LEO and vLEO orbits, optical inter and intra node-links design, cell-free MU-MIMO, traffic-driven coverage

Networking, edge computing and communications

Softwarization, virtualization, and orchestration of network resources, functional split, advanced IP, routing in the sky, resource management, integrated edge communication and computing

Flexible and integrated waveforms

Low PAPR and low OOBE solutions, Non-orthogonal techniques to increase the connection density, novel RA procedures to allow multiple transmissions per beam, multipoint transmission from the sky, distributed beamforming

Dynamic Spectrum Access and New spectrum

Coordinated and uncoordinated sharing among different access technologies inter and intra layer, higher frequency bands, Q/V and above

Positioning

Network based positioning

AI/ML

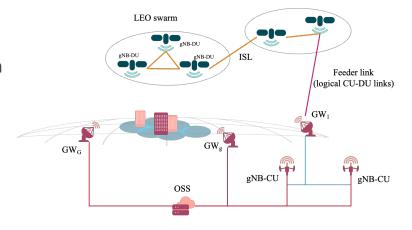
Enabling

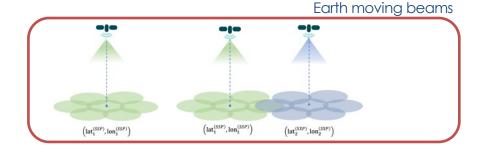
Technologies

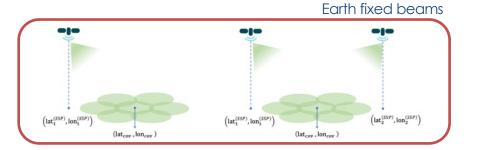
Network and system orchestration, Radio Resource Management, Network traffic forecasting, Physical layer management, Channel estimation,

Antennas and components

Active antennas for link budget and flexible coverage, Refracting RIS for indoor coverage, regenerative payload, high-parallel energy efficient HW, Optical devices

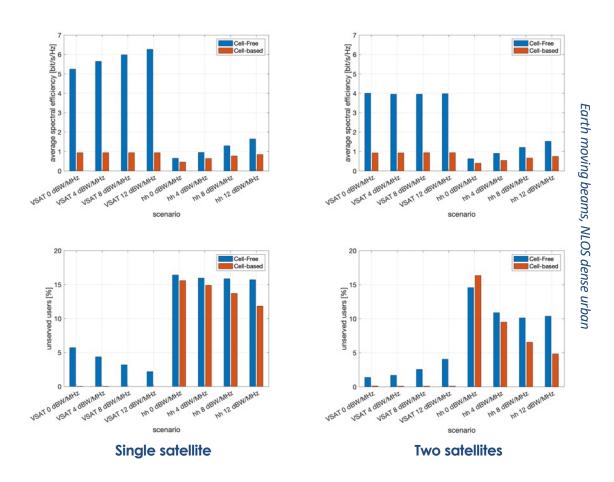





Cell-free MU-MIMO and DSA

Cell-Free MU-MIMO: initial results

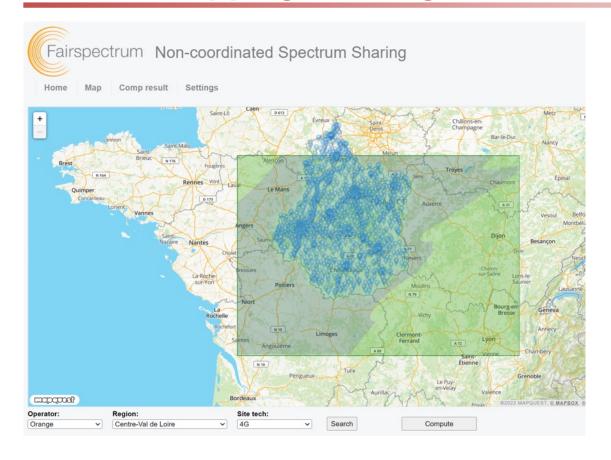
- Multipoint transmission from multiple LEO nodes with beamforming
 - Centralised computation
 - On-ground (gNB-CU) scheduling and beamfomring computation
 - ISLs inter-swarm
 - Distributed computation
 - On-board (gNB-DU) scheduling and beamforming computation
 - Master LEO node managing the satellite formation
 - Earth moving or Earth fixed (beam steering) beams

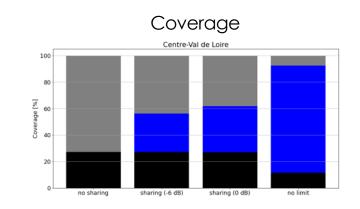

Cell-Free MU-MIMO: initial results

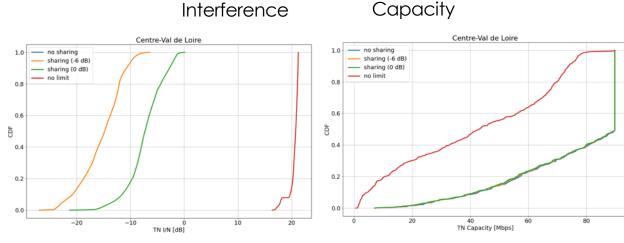
Spectral efficiency

- VSAT: 3-5 bit/s/Hz gain with CF
- handheld: up to 1 bit/s/Hz

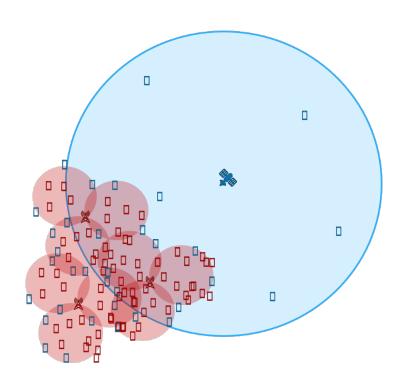
Outage

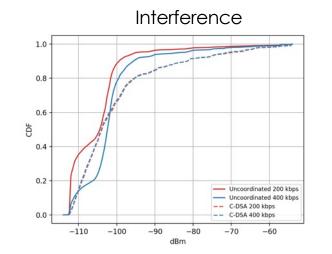

- The impact of harsh propagation conditions is detrimental due to the clutter loss and the impact of the moving satellite(s)
- A second satellite leads to path diversity and a better performance
- In clear-sky or LOS conditions¹, no loss is observed with a single satellite

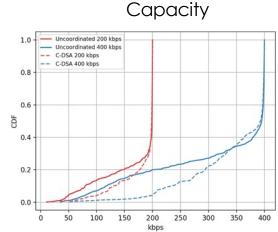



Source: EC SPACE-29-TEC-2020 Project DYNASAT, D3.5, "Bandwidth Efficient Techniques evaluation," May 2022

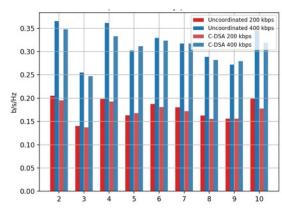
Dynamic Spectrum Access: NTN and TN spectrum sharing Non-overlapping coverage areas




- Real French mobile sites
- Realistic LEO satellite constellation (184 beams)
- Optimize beams so that I/N is below a threshold


Live demonstration at EUCNC'22 in Grenoble on Jun 7-10 by FairSpectrum

Dynamic Spectrum Access: NTN and TN spectrum sharing Overlapping coverage areas



Sharing based on with 3GPP frame structure

Spectral efficiency

Live demonstration at EUCNC'22 in Grenoble on Jun 7-10 by FairSpectrum

Conclusions

- The integration of a NTN component into 5G is a reality since Rel. 17
- 5G advanced will bring additional capabilities to the integrated NTN component
- 6G aims at a fully unified T-NT infrastrucure thus requiring revolutionary NTN techniques and building blocks
 - Multi-dimensional multi-layer NT architecture
 - Innovative constellation design (integrated and multi-layered)
 - Unified and flexible waveform considering the NTN environment conditions already at the design phase
 - Integrated edge communication and computing in the sky
 - Advanced IP and routing in the sky
 - NTN supported network based positioning
 - Coexistence and Dynamic Spectrum Allocation
 - Higher frequencies Q/V and above
 - Security and Quantum
 - Regenerative and flexible payloads for full virtualization and orchestration of network resources
 - AI/ML down to Physical Layer and up in the sky (model exchanges, data, etc)
 - Antennas and new components (Energy efficient and high parallel HW, Optical, etc)

Current initiatives...

- NetworldEurope
 - Strategic Research and Innovation Agenda to be published August 2022
- H2020 DYNASAT (Dynamic spectrum sharing and bandwidth-efficient techniques for highthroughput MIMO Satellite systems)
 - research, develop, and demonstrate techniques for bandwidth efficient transmission and efficient spectrum usage for a high-throughput 5G/6G satellite access network infrastructure, based on advanced NGSO-mega-constellations
 - http://dynasat.eu/
 - in https://www.linkedin.com/company/dynasat/
 - https://twitter.com/dynasat_project
- ESA EAGER (Technologies and techniques for satcom beyond 5G networks)
 - research and identification of innovative technologies and techniques targeting highly efficient and deeply integrated satellite networks in 5G-Advanced and 6G communication systems
 - in https://www.linkedin.com/company/eager-project/
 - <u>https://twitter.com/eagersatcom</u>

Prof. Alessandro Vanelli-Coralli

Department of Electrical, Electronic, and Information Engineering «Guglielmo Marconi»

alessandro.vanelli@unibo.it